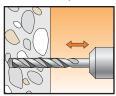
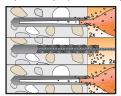
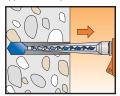
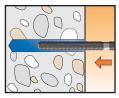
EPX 400S — ХИМИЧЕСКИЙ КЛЕЕВОЙ АНКЕР НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ

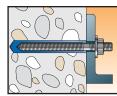




НАЗНАЧЕНИЕ


- Для анкеровки в сжатую и растянутую зону бетона класса С20/25 и выше, природный камень плотной структуры
- Применяется при монтаже колонн, стоек, балок, лестниц, поручней, мачт освещения, дорожных ограждений, рекламных щитов и шумозащитных экранов, устройства арматурных выпусков, технологического оборудования


1. Пробурить отверстие необходимого диаметра на требуемую глубину.


2. Продуть отверстие от буровой крошки не менее 2х раз, затем прочистить металлической щеткой 2 раза и снова продуть 2 раза.

3. Заполнить отверстие инъекционным составом, начиная от дна, примерно на 2/3 глубины.

4. Установить шпильку на требуемую глубину и выждать время полного отвердевания состава.

5. Затянуть деталь динамометрическим ключом с рекомендуемым моментом затяжки Tinst.

СВОЙСТВА

- Не содержит стирола
- Имеет техническое свидетельство ФЦС
- Возможность расчета согласно СТО «Анкерные крепления к бетону. Правила проектирования», 2017
- Имеет Европейский Технический допуск для растянутой зоны бетона, высшая опция 1
- Имеет предел огнестойкости R240
- Применяется при монтаже во влажные отверстия и под водой
- Возможно использование со шпильками диаметром свыше M30 и тяжелой арматурой
- Применяется совместно с «гладкой арматурой» (AI)
- При установке не создает напряжений в базовом материале
- Минимальные осевые и краевые расстояния
- Малые усилия выпрессовки состава из картриджа
- Система многоразового использования
- Применяется для отверстий, выполненных установкой алмазного бурения
- Применим как для наружных, так и внутренних работ

ВРЕМЯ СХВАТЫВАНИЯ И ПОЛНОГО ОТВЕРДЕВАНИЯ СОСТАВА

Температура базового основания, °С	0°С до +5°С	+5°С до +10°С	+10°С до +20°С	+20°С до +30°С	+30°С до +40°С
Время схватывания	3 ч	2 ч	30 мин	19 мин	7 мин
Время полного отвердевания	48 ч	40 ч	18 ч	10 ч	7 ч

ПОДБОР ИЗДЕЛИЯ

Обозначение	Артикул	Упаковка, шт.	Объем, мл	Дозатор	Срок годности, месяцев
EPX 400S	400020	12	400	EGU-3	12

EPX 400S — ХИМИЧЕСКИЙ КЛЕЕВОЙ АНКЕР НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ

СРЕДНИЕ ПРЕДЕЛЬНЫЕ, РАСЧЕТНЫЕ И ДОПУСКАЕМЫЕ НАГРУЗКИ НА ОДИНОЧНЫЙ КЛЕЕВОЙ ХИМИЧЕСКИЙ АНКЕР **ЕРХ400S** С РЕЗЬБОВОЙ ШПИЛЬКОЙ КЛАССА ПРОЧНОСТИ 5.8, 8.8 И А4 ДЛЯ СЖАТОЙ 3ОНЫ БЕТОНА C20/25

П	M10				M12			M16			M20			M24			M30		
Параметр	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	
Эффективная глубина анкеровки hef, мм		<u>60</u> 200			70 240			80 320			90 400			96 480			120 600		
Средние предельные нагрузки Nu, Vu																			
Вырывающая нагрузка Nu, кН	29,0* 29,0*	30,0 46,0*	30,0 41,0*	39,3 42,0*	39,3 67,0*	39,3 59,0*	48,0 79,0*	48,0 126,0*	48,0 110,0*	57,6 123,0*	57,6 196,0*	57,6 172,0*	63,4 177,0*	63,4 282,0*	$\frac{63,4}{247,0^*}$	79,0 281,0*	79,0 449,0*	^{79,0} / _{393,0*}	
Срезающая нагрузка Vu, кН	15,0*	23,0*	20,0*	21,0*	34,0*	30,0*	39,0*	63,0*	55,0*	61,0*	98,0*	86,0*	88,0*	141,0*	124,0*	140,0*	224,0*	196,0*	
						Расче	тные на	грузки N	rd, Vrd										
Вырывающая нагрузка Nrd, кН	12,5 19,3	12,5 30,7	12,5 21,6	16,4 28,0	$\frac{16,4}{44,7}$	16,4 31,1	20,1 52,6	$\frac{20,1}{84,0}$	20,1 57,9	24,0 82,0	24,0 130,7	24,0 90,5	26,4 118,0	26,4 188,0	<u>26,4</u> 130,0	36,9 187,0	36,9 299,3	36,9 206,8	
Срезающая нагрузка Vrd, кH	12,0	18,4	12,8	16,4	27,2	19,2	31,2	50,4	35,6	48,8	78,4	56,4	70,4	112,8	79,5	112,0	179,2	125,6	
						Допуска	емые но	грузки М	Vrec, Vre	С									
Вырывающая нагрузка Nrec, кН	8,9 13,8	8,9 21,9	8,9 15,4	11,7 20,0	11,7 31,9	$\frac{11,7}{22,1}$	14,4 37,6	$\frac{14,4}{60,0}$	$\frac{14,4}{41,3}$	17,1 58,6	17,1 92,9	17,1 64,6	18,9 84,3	18,9 134,2	16,1 92,9	26,4 133,6	$\frac{26,4}{213,5}$	26,4 147,1	
Срезающая нагрузка Vrec, кН	8,6	13,1	15,4	11,7	19,4	13,7	22,3	36,0	25,4	34,9	56,0	40,3	50,3	80,6	56,8	80,0	127,9	89,7	
Рекомендованный момент затяжки Tinst, Hм		20			40			80			135			200			270		
Диаметр бура do, мм		12			14			20			24			28			35		
Минимальное осевое расстояние Smin, мм		40			40			45			50			55			65		
Минимальное краевое расстояние Cmin, мм		40			40			45			50			55			65		
Минимальная толщина базового основания hmin, мм		$\frac{100}{224}$			$\frac{100}{268}$			115 336			130 444			160 532			200 670		
Размер под ключ SW		17			19			24			30			36			46		

^{*} Разрушение по стали

СРЕДНИЕ ПРЕДЕЛЬНЫЕ, РАСЧЕТНЫЕ И ДОПУСКАЕМЫЕ НАГРУЗКИ НА ОДИНОЧНЫЙ КЛЕЕВОЙ ХИМИЧЕСКИЙ АНКЕР **ЕРХ400S** С РЕЗЬБОВОЙ ШПИЛЬКОЙ КЛАССА ПРОЧНОСТИ 5.8, 8.8 И А4 ДЛЯ РАСТЯНУТОЙ ЗОНЫ БЕТОНА C20/25

П	M10			M12			M16			M20			M24			M30		
Параметр	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70	5.8	8.8	A4-70
Эффективная глубина анкеровки hef, мм		60 200			70 240			80 320			90 400			96 480			120 600	
Средние предельные нагрузки Nu, Vu																		
Вырывающая нагрузка Nu, кН	22,5 29,0	22,5 46,0*	22,5 41,0*	28,1 42,0*	28,1 67,0*	28,1 59,0*	33,8 79,0*	33,8 120,6*	33,8 110,0*	41,0 123,0*	41,0 196,0*	41,0 172,0*	45,4 177,0*	45,4 282,0*	$\frac{45,4}{247,0*}$	80,0 281,0*	56,5 449,0*	56,5 393,0*
Срезающая нагрузка Vu, кН	15,0*	23,0*	20,0*	21,0*	34,0*	30,0*	39,0*	63,0*	55,0*	61,0*	98,0*	86,0*	88,0*	141,0*	124,0*	140,0*	224,0*	196,0*
	Расчетные нагрузки Nrd, Vrd																	
Вырывающая нагрузка Nrd, кН	9,4 19,3	9,4 30,7	9,4 21,6	11,7 28,0	11,7 44,7	11,7 31,1	14,1 52,6	$\frac{14,1}{80,4}$	14,1 57,9	17,1 82,0	17,1 111,6	17,1 90,5	18,9 118,0	18,9 160,8	18,9 130,0	26,4 187,0	26,4 204,1	26,4 204,1
Срезающая нагрузка Vrd, кH	12,0	18,4	12,8	16,4	27,2	19,2	31,2	50,4	35,6	48,8	78,4	56,4	70,4	112,8	79,5	112,0	179,2	125,6
						Допуска	емые но	грузки М	Irec, Vre	С								
Вырывающая нагрузка Nrec, кН	<u>6,7</u> 13,8	<u>6,7</u> 21,9	6,7 15,4	8,4 20,0	8,4 31,4	$\frac{8,4}{22,2}$	10,1 37,6	10,1 57,4	$\frac{10,1}{41,4}$	12,2 58,6	$\frac{12,2}{74,4}$	12,2 64,6	13,5 84,3	13,5 114,9	13,5 92,3	18,9 133,6	18,9 145,7	18,9 145,7
Срезающая нагрузка Vrec, кН	8,6	13,1	15,4	11,7	19,4	13,7	22,3	36,0	25,4	34,9	56,0	40,3	50,3	80,6	56,8	80,0	127,9	89,7
Рекомендованный момент затяжки Tinst, Hм		20			40			80			135			200			270	
Диаметр бура d ₀ , мм		12			14			20			24			28			35	
Минимальное осевое расстояние Smin, мм		40			40			45			50			55			65	
Минимальное краевое расстояние Cmin, мм		40			40			45			50			55			65	
Минимальная толщина базового основания hmin, мм		$\frac{100}{224}$			100 268			115 336			130 444			160 532			<u>200</u> 670	
Размер под ключ SW		17			19			24			30			36			46	

^{*} Разрушение по стали

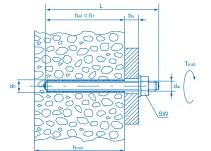
EPX 400S — ХИМИЧЕСКИЙ КЛЕЕВОЙ АНКЕР НА ОСНОВЕ ЭПОКСИДНОЙ СМОЛЫ

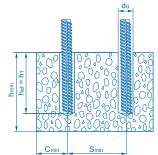
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

d₀ – диаметр бура, мм

h_{ef} - эффективная глубина анкеровки, мм

 t_{fix} – максимальная толщина прикрепляемой детали, мм


h₁ - минимальная глубина отверстия, мм


 h_{min} – минимальная толщина базового основания, мм

L – общая длина шпильки, мм

dw - диаметр резьбы шпильки, мм

T_{inst} – рекомендованный момент затяжки анкера, Нм

ДОПУСКАЕМЫЕ НАГРУЗКИ НА ОДИНОЧНЫЙ КЛЕЕВОЙ ХИМИЧЕСКИЙ АНКЕР **EPX400S** С АРМАТУРНЫМ ПРУТКОМ (ПРЕДЕЛ ТЕКУЧЕСТИ 500 МПА) ДЛЯ СЖАТОЙ ЗОНЫ БЕТОНА C20/25

Параметр	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32					
Параметр	Ø10	W12	910	<i>Ø</i> 20	923	932					
Эффективная глубина анкеровки hef, мм	60/200	70/240	80/320	90/400	100/500	128/640					
Средние предельные нагрузки Nu, Vu											
Вырывающая нагрузка Nu, кН	31,4/43,0*	39,3/62,0*	48,2/111,0*	57,6/173,0*	60,0/270,0*	97,4/442,0*					
Срезающая нагрузка Vu, кH	22,0*	31,0*	55,0*	86,0*	135,0*	221,0*					
	Расчет	гные нагрузки Nrd	, Vrd								
Вырывающая нагрузка Nrd, кН	13,1/30,7	16,4/44,3	20,1/79,3	24,0/123,6	30,6/192,8	40,6/315,7					
Срезающая нагрузка Vrd, кН	14,7	20,7	36,7	57,3	90,0	147,3					
	Допуска	емые нагрузки Nre	ec, Vrec								
Вырывающая нагрузка Nrec, кH	9,4/21,9	11,7/31,6	14,4/56,6	17,1/87,6	21,8/137,7	29,0/225,5					
Срезающая нагрузка Vrec, кН	10,5	14,8	26,2	40,9	64,3	105,2					
Диаметр бура d ₀ , мм	14	16	20	25	32	40					
Минимальное осевое расстояние Smin, мм	40	40	45	50	55	65					
Минимальное краевое расстояние Cmin, мм	40	40	45	50	55	65					
Минимальная толщина базового основания hmin, мм	100/228	100/272	120/360	140/450	164/564	208/720					

^{*} Разрушение по стали

ДОПУСКАЕМЫЕ НАГРУЗКИ НА ОДИНОЧНЫЙ КЛЕЕВОЙ ХИМИЧЕСКИЙ АНКЕР **ЕРХ400S** С АРМАТУРНЫМ ПРУТКОМ (ПРЕДЕЛ ТЕКУЧЕСТИ 500 МПА) ДЛЯ РАСТЯНУТОЙ ЗОНЫ БЕТОНА C20/25

Параметр	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Эффективная глубина анкеровки hef, мм	60/200	70/240	80/320	90/400	100/500	128/640
Вырывающая нагрузка Nu, кН	22,6/43,0*	28,1/62,0*	34,6/111,0*	41,0/173,0*	52,6/270,0*	69,6/442,0*
Срезающая нагрузка Vu, кН	22,0*	31,0*	55,0*	86,0*	135,0*	221,0*
	Расчет	тные нагрузки Nrd	, Vrd			
Вырывающая нагрузка Nrd, кН	9,4/30,7	11,7/44,3	14,4/71,3	17,1/111,6	21,9/130,7	29,0/214,3
Срезающая нагрузка Vrd, кH	14,7	20,7	36,7	57,3	90,0	147,3
	Допуска	емые нагрузки Nre	c, Vrec			
Вырывающая нагрузка Nrec, кH	6,7/21,9	8,4/31,6	10,3/50,9	12,2/79,7	15,6/92,9	20,7/153,1
Срезающая нагрузка Vrec, кН	10,5	14,8	26,2	40,9	64,3	105,2
Диаметр бура d ₀ , мм	14	16	20	25	32	40
Минимальное осевое расстояние Smin, мм	40	40	45	50	55	65
Минимальное краевое расстояние Cmin, мм	40	40	45	50	55	65
Минимальная толщина базового основания hmin, мм	100/228	100/272	120/360	140/450	164/564	208/720

^{*} Разрушение по стали

